Teddington Middlesex UK TW11 0LW Telephone +44 20 8977 3222

Test Report

Determination of Attenuation Properties of Materials using Diagnostic X-Radiation

This test report may only be published in full, unless permission for the publication of an approved extract has been obtained in writing from NPL Management Ltd. It does not of itself impute to the subject of test any attributes beyond those shown by the data contained herein.

FOR:

Kemmetech Ltd

Unit 4, Arnold Business Park

Branbridges Road East Peckham Tonbridge TN12 5LG United Kingdom

DESCRIPTION:

Determination of Attenuation properties of Lightweight Lead Vinyl Material according to BS EN 61331-1:2014 using the modified Broad Beam Geometry (Eder and Schlattl, 2018¹)

DATE OF MEASUREMENTS:

19 July 2018

Reference: 2018070339 1

Date of Issue: 16 November 2018

Checked by:

CAB

Signed:

.

Name: G A Bass

Page 1 of 4

(Authorised signatory)

on behalf of NPLML

Continuation Sheet

CONDITIONS:

Distance from x-ray tube to target sample:

1.5m

Ionisation chamber used:

PTW TW34069-2.5 s/n 000231

All equipment associated with the measurements performed in this report has direct traceability to UK national standards or UKAS accredited calibration facilities.

Table I 61331-1:2014 X-ray beam qualities

X-ray Tube Voltage kV	Added filtration mmAl*
50	2.5
60	2.5
70	2.5
90	2.5
110	2.5
150	2.5

*The inherent filtration of the x-ray tube was determined to be 0.3mmAl equivalent (according to ISO 4037-1:1996), giving a total filtration of 2.8mmAl

Reference:

2018070339 1

Checked by: MM

GH

Page 2 of 4

Continuation Sheet

RESULTS:

Table II

Lightweight Lead Vinyl, sample #52, 0.25mm nominal Lead equivalent

Measured Area density: 3.35 kg/m²

<u>kV</u>	F _{mBBG}	<u>δ_{mBBG}</u>	PASS/FAIL†
50	92.86	0.2334	PASS
60	39.37	0.2371	PASS
70	20.42	0.2415	PASS
90	9.64	0.2458	PASS
110	6.71	0.2448	PASS
150	4.50	0.2472	PASS

Table III

Lightweight Lead Vinyl, sample #53, 0.35mm nominal Lead equivalent

Measured Area density: 4.65 kg/m²

<u>kV</u>	F _{mBBG}	<u>δ_{mBBG}</u>	PASS/FAIL†
50	352.5	0.3319	PASS
60	100.3	0.3323	PASS
70	42.63	0.3429	PASS
90	15.86	0.3446	PASS
110	10.50	0.3424	PASS
150	6.71	0.3435	PASS

Table IV

Lightweight Lead Vinyl, sample #54, 0.5mm nominal Lead equivalent Measured Area density: 6.62 kg/m²

kV	F _{mBBG}	$\delta_{\rm mBBG}$	PASS/FAIL†
50	1735	0.4669	PASS
60	313.1	0.4680	PASS
70	99.89	0.4824	PASS
90	28.33	0.4820	PASS
110	18.21	0.4842	PASS
150	11.18	0.4848	PASS

†Determination of the lead equivalent class for a specified range of radiation qualities according to IEC 61331-1 clause 5.5.

Clause 5.5.3 of IEC 61331-1:2014 states that a relative standard uncertainty of 7% be taken into account in the decision of conformity in assigning the class of the Lead equivalent thickness to the material under test. If t_{Pb} is the standard Lead equivalent thickness class (0.25mm, 0.35mm, 0.5mm or 1mm) and δ_{mBBG} is the Lead equivalence of the material under test, the condition can be written as:

 $\delta_{mBBG} \ge 0.93 t_{Pb}$

Reference:

2018070339_1

Checked by:

NAB

Page 3 of 4

Continuation Sheet

 F_{mBBG} is the attenuation ratio in the modified Broad Beam geometry, given by:

$$F_{mBBG} = \frac{\dot{K}_0 - \dot{K}_B}{\dot{K}_1 - \dot{K}_B}$$

where \dot{K}_0 = Air Kerma Rate without the test object in the beam

 \dot{K}_1 = Air Kerma Rate with the test object in the beam

 $\vec{k}_B = \text{Background Air Kerma Rate}$ with the test object replaced by a sheet of material with an attenuation ratio greater than 10⁵.

The Lead equivalent value δ_{mBBG} in mm using the Modified Broad Beam Geometry is obtained from fits to the attenuation curves F_{mBBG} of Lead foils of known thicknesses and of at least 99.995% purity.

UNCERTAINTIES

The uncertainty in the Lead equivalence value δ_{mBBG} is $\pm 5\%$. The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%.

REFERENCES

1. IEC 61331-1: A new setup for testing lead free X-ray protective clothing, Heinrich Eder and Helmut Schlattl, *Physica Medica 45 (2018) 6–11*

Reference:

2018070339 1

Checked by:

NA ALR Page 4 of 4